Jumat, 20 Mei 2011

GENETIKA


Genetika
Genetika (dipinjam dari bahasa Belanda:genetica, adaptasi dari bahasa Inggris: genetics, dibentuk dari kata bahasa Yunani γέννω, genno, yang berarti "melahirkan") adalah cabang biologi yang mempelajari pewarisan sifat pada organisme maupun suborganisme (seperti virus dan prion). Secara singkat dapat juga dikatakan bahwa genetika adalah ilmu tentang gen dan segala aspeknya. Istilah "genetika" diperkenalkan oleh William Bateson pada suatu surat pribadi kepada Adam Chadwick dan ia menggunakannya pada Konferensi Internasional tentang Genetika ke-3 pada tahun 1906.
Bidang kajian genetika dimulai dari wilayah subselular (molekular) hingga populasi. Secara lebih rinci, genetika berusaha menjelaskan

Awal mula dan konsep dasar

Periode pra-Mendel

Meskipun orang biasanya menetapkan genetika dimulai dengan ditemukannya kembali naskah artikel yang ditulis Gregor Mendel pada tahun 1900, sebetulnya genetika sebagai "ilmu pewarisan" atau hereditas sudah dikenal sejak masa prasejarah, seperti domestikasi dan pengembangan berbagai ras ternak dan kultivar tanaman. Orang juga sudah mengenal efek persilangan dan perkawinan sekerabat serta membuat sejumlah prosedur dan peraturan mengenai hal tersebut sejak sebelum genetika berdiri sebagai ilmu yang mandiri. Silsilah tentang penyakit pada keluarga, misalnya, sudah dikaji orang sebelum itu. Namun demikian, pengetahuan praktis ini tidak memberikan penjelasan penyebab dari gejala-gejala itu.
Teori populer mengenai pewarisan yang dianut pada masa itu adalah teori pewarisan campur: seseorang mewariskan campuran rata dari sifat-sifat yang dibawa tetuanya, terutama dari pejantan karena membawa sperma. Hasil penelitian Mendel menunjukkan bahwa teori ini tidak berlaku karena sifat-sifat dibawa dalam kombinasi yang dibawa alel-alel khas, bukannya campuran rata. Pendapat terkait lainnya adalah teori Lamarck: sifat yang diperoleh tetua dalam hidupnya diwariskan kepada anaknya. Teori ini juga patah dengan penjelasan Mendel bahwa sifat yang dibawa oleh gen tidak dipengaruhi pengalaman individu yang mewariskan sifat itu[1]. Charles Darwin juga memberikan penjelasan dengan hipotesis pangenesis dan kemudian dimodifikasi oleh Francis Galton[2]. Dalam pendapat ini, sel-sel tubuh menghasilkan partikel-partikel yang disebut gemmula yang akan dikumpulkan di organ reproduksi sebelum pembuahan terjadi. Jadi, setiap sel dalam tubuh memiliki sumbangan bagi sifat-sifat yang akan dibawa zuriat (keturunan).

Pada masa pra-Mendel, orang belum mengenal gen dan kromosom (meskipun DNA sudah diekstraksi namun pada abad ke-19 belum diketahui fungsinya). Saat itu orang masih beranggapan bahwa sifat diwariskan lewat sperma (tetua betina tidak menyumbang apa pun terhadap sifat anaknya).

Konsep dasar

Peletakan dasar ilmiah melalui percobaan sistematik baru dilakukan pada paruh akhir abad ke-19 oleh Gregor Johann Mendel. Ia adalah seorang biarawan dari Brno (Brünn dalam bahasa Jerman), Kekaisaran Austro-Hungaria (sekarang bagian dari Republik Ceko). Mendel disepakati umum sebagai 'pendiri genetika' setelah karyanya "Versuche über Pflanzenhybriden" atau Percobaan mengenai Persilangan Tanaman (dipublikasi cetak pada tahun 1866) ditemukan kembali secara terpisah oleh Hugo de Vries, Carl Correns, dan Erich von Tschermak pada tahun 1900. Dalam karyanya itu, Mendel pertama kali menemukan bahwa pewarisan sifat pada tanaman (ia menggunakan tujuh sifat pada tanaman kapri, Pisum sativum) mengikuti sejumlah nisbah matematika yang sederhana. Yang lebih penting, ia dapat menjelaskan bagaimana nisbah-nisbah ini terjadi, melalui apa yang dikenal sebagai 'Hukum Pewarisan Mendel'.
Dari karya ini, orang mulai mengenal konsep gen (Mendel menyebutnya 'faktor'). Gen adalah pembawa sifat. Alel adalah ekspresi alternatif dari gen dalam kaitan dengan suatu sifat. Setiap individu disomik selalu memiliki sepasang alel, yang berkaitan dengan suatu sifat yang khas, masing-masing berasal dari tetuanya. Status dari pasangan alel ini dinamakan genotipe. Apabila suatu individu memiliki pasangan alel sama, genotipe individu itu bergenotipe homozigot, apabila pasangannya berbeda, genotipe individu yang bersangkutan dalam keadaan heterozigot. Genotipe terkait dengan sifat yang teramati. Sifat yang terkait dengan suatu genotipe disebut fenotipe.

Kronologi perkembangan genetika

Setelah penemuan ulang karya Mendel, genetika berkembang sangat pesat. Perkembangan genetika sering kali menjadi contoh klasik mengenai penggunaan metode ilmiah dalam ilmu pengetahuan atau sains.
Berikut adalah tahapan-tahapan perkembangan genetika:
1859 Charles Darwin menerbitkan The Origin of Species, sebagai dasar variasi genetik.;
1865 Gregor Mendel menyerahkan naskah Percobaan mengenai Persilangan Tanaman;
1878 E. Strassburger memberikan penjelasan mengenai pembuahan berganda;
1900 Penemuan kembali hasil karya Mendel secara terpisah oleh Hugo de Vries (Belgia), Carl Correns (Jerman), dan Erich von Tschermak (Austro-Hungaria) ==> awal genetika klasik;
1903 Kromosom diketahui menjadi unit pewarisan genetik;
1905 Pakar biologi Inggris William Bateson mengkoinekan istilah 'genetika';
1908 dan 1909 Peletakan dasar teori genetika populasi oleh Weinberg (dokter dari Jerman) dan secara terpisah oleh James W. Hardy (ahli matematika Inggris) ==> awal genetika populasi;
1910 Thomas Hunt Morgan menunjukkan bahwa gen-gen berada pada kromosom, menggunakan lalat buah (Drosophila melanogaster) ==> awal sitogenetika;
1913 Alfred Sturtevant membuat peta genetik pertama dari suatu kromosom;
1918 Ronald Fisher (ahli biostatistika dari Inggris) menerbitkan On the correlation between relatives on the supposition of Mendelian inheritance (secara bebas berarti "Keterkaitan antarkerabat berdasarkan pewarisan Mendel"), yang mengakhiri perseteruan antara teori biometri (Pearson dkk.) dan teori Mendel sekaligus mengawali sintesis keduanya ==> awal genetika kuantitatif;
1927 Perubahan fisik pada gen disebut mutasi;
1928 Frederick Griffith menemukan suatu molekul pembawa sifat yang dapat dipindahkan antarbakteri (konjugasi);
1931 Pindah silang menyebabkan terjadinya rekombinasi;
1941 Edward Lawrie Tatum and George Wells Beadle menunjukkan bahwa gen-gen menyandi protein, ==> awal dogma pokok genetika;
1944 Oswald Theodore Avery, Colin McLeod and Maclyn McCarty mengisolasi DNA sebagai bahan genetik (mereka menyebutnya prinsip transformasi);
1950 Erwin Chargaff menunjukkan adanya aturan umum yang berlaku untuk empat nukleotida pada asam nukleat, misalnya adenin cenderung sama banyak dengan timin;
1952 Hershey dan Chase membuktikan kalau informasi genetik bakteriofag (dan semua organisme lain) adalah DNA;
1953 Teka-teki struktur DNA dijawab oleh James D. Watson dan Francis Crick berupa pilin ganda (double helix), berdasarkan gambar-gambar difraksi sinar X DNA dari Rosalind Franklin ==> awal genetika molekular;
1956 Jo Hin Tjio dan Albert Levan memastikan bahwa kromosom manusia berjumlah 46;
1958 Eksperimen Meselson-Stahl menunjukkan bahwa DNA digandakan (direplikasi) secara semikonservatif;
1961 Kode genetik tersusun secara triplet;
1964 Howard Temin menunjukkan dengan virusRNA bahwa dogma pokok dari tidak selalu berlaku;
1970 Enzim restriksi ditemukan pada bakteri Haemophilus influenzae, memungkinan dilakukannya pemotongan dan penyambungan DNA oleh peneliti (lihat juga RFLP) ==> awal bioteknologi modern;
1977 Sekuensing DNA pertama kali oleh Fred Sanger, Walter Gilbert, dan Allan Maxam yang bekerja secara terpisah. Tim Sanger berhasil melakukan sekuensing seluruh genom Bacteriofag Φ-X174;, suatu virus ==> awal genomika;
1983 Perbanyakan (amplifikasi) DNA dapat dilakukan dengan mudah setelah Kary Banks Mullis menemukan Reaksi Berantai Polymerase (PCR);
1989 Sekuensing pertama kali terhadap gen manusia pengkode protein CFTR penyebab cystic fibrosis;
1989 Peletakan landasan statistika yang kuat bagi analisis lokus sifat kuantitatif (analisis QTL) ;
1995 Sekuensing genom Haemophilus influenzae, yang menjadi sekuensing genom pertama terhadap organisme yang hidup bebas;
1996 Sekuensing pertama terhadap eukariota: khamir Saccharomyces cerevisiae;
1998 Hasil sekuensing pertama terhadap eukariota multiselular, nematoda Caenorhabditis elegans, diumumkan;
2001 Draf awal urutan genom manusia dirilis bersamaan dengan mulainya Human Genome Project;
2003 Proyek Genom Manusia (Human Genome Project) menyelesaikan 99% pekerjaannya pada tanggal (14 April) dengan akurasi 99.99% [1]

Cabang-cabang Genetika

Genetika berkembang baik sebagai ilmu murni maupun ilmu terapan. Cabang-cabang ilmu ini terbentuk terutama sebagai akibat pendalaman terhadap suatu aspek tertentu dari objek kajiannya.
Cabang-cabang murni genetika :
Cabang-cabang terapan genetika :
Bioteknologi merupakan ilmu terapan yang tidak secara langsung merupakan cabang genetika tetapi sangat terkait dengan perkembangan di bidang genetika.

Genetika arah-balik (reverse genetics)

Kajian genetika klasik dimulai dari gejala fenotipe (yang tampak oleh pengamatan manusia) lalu dicarikan penjelasan genotipiknya hingga ke aras gen. Berkembangnya teknik-teknik dalam genetika molekular secara cepat dan efisien memunculkan filosofi baru dalam metodologi genetika, dengan membalik arah kajian. Karena banyak gen yang sudah diidentifikasi sekuensnya, orang memasukkan atau mengubah suatu gen dalam kromosom lalu melihat implikasi fenotipik yang terjadi. Teknik-teknik analisis yang menggunakan filosofi ini dikelompokkan dalam kajian genetika arah-balik atau reverse genetics, sementara teknik kajian genetika klasik dijuluki genetika arah-maju atau forward genetics.

Genetika molekuler

Genetika molekular merupakan cabang genetika yang mengkaji bahan genetik dan ekspresi genetik di tingkat subselular (di dalam sel). Subjek kajiannya mencakup struktur, fungsi, dan dinamika dari bahan-bahan genetika serta hasil ekspresinya.
Seringkali genetika molekular disamakan dengan biologi molekular. Hal ini tidak sepenuhnya bisa disalahkan, karena (1) biologi molekular lahir dari kajian genetika dan (2) keduanya memakai teknik-teknik analisis yang sama. Sampai sekarang pun genetika molekular masih merupakan kajian biologi molekular yang terpenting. Namun sekarang dapat dilihat bahwa biologi molekular telah merambah bidang biologi lain, khususnya fisiologi dan ekologi, dalam arti teknik-teknik biologi molekular dipakai untuk menjelaskan gejala-gejala fisiologi dan ekologi.
Genetika molekular berkembang di tahun 1930-an ketika teknik kristalografi sinar-X dikembangkan untuk mendeskripsi biomolekul. Namun umumnya orang menyebut kelahiran ilmu ini sejak publikasi model struktur DNA oleh James D. Watson dan Francis Crick (1953) di majalah Nature, berdasarkan foto-foto difraksi sinar-X dari kristal DNA yang dibuat Rosalind Franklin.

[sunting] Cabang-cabang dan keterkaitan dengan ilmu lain

Karena perkembangannya yang pesat dan subjek kajiannya yang "berat" untuk diamati, sejak tahun 1990-an orang memilah-milah genetika molekular berdasarkan subjek kajiannya (sering disebut sebagai omics science karena semuanya berakhiran demikian dalam bahasa Inggris):
Genetika molekular menggunakan teknik-teknik analisis dengan ukuran volume bahan yang sangat kecil dan banyak sehingga memerlukan bantuan mesin automatik untuk mengerjakannya. Dari sisi ini, genetika molekular mendorong berkembangnya robotika. Volume data yang sangat besar juga mendorong berkembangnya bioinformatika, ilmu yang mempelajari penerapan analisis data molekular dan pengolahannya dengan bantuan komputer.
Genetika Populasi
Genetika Populasi adalah cabang genetika yang membahas transmisi bahan genetik pada ranah populasi. Dari objek bahasannya, genetika populasi dapat dikelompokkan sebagai cabang genetika yang berfokus pada pewarisan genetik.
Ilmu ini membicarakan implikasi hukum pewarisan Mendel apabila diterapkan pada sekumpulan individu sejenis di suatu tempat. Berbeda dengan genetika Mendel, yang mengkaji pewarisan sifat untuk perkawinan antara dua individu (atau dua kelompok individu yang memiliki genotipe yang sama), genetika populasi berusaha menjelaskan implikasi yang terjadi terhadap bahan genetik akibat saling kawin yang terjadi di dalam satu atau lebih populasi.
Genetika Populasi didasarkan pada Hukum Hardy-Weinberg, yang diperkenalkan pertama kali oleh Wilhelm Weinberg (1908) dan, hampir bersamaan tetapi secara independen, Godfrey Hardy (1908).

Genetika kuantitatif

Cabang genetika yang membahas pewarisan sifat-sifat terukur (kuantitatif atau metrik), yang tidak bisa dijelaskan secara langsung melalui hukum pewarisan Mendel. Sifat-sifat yang tergolong sifat kuantitatif misalnya tinggi atau berat badan, hasil panen, atau produksi susu.
Genetika kuantitatif menerapkan hukum pewarisan Mendel untuk gen dengan pengaruh yang kecil/lemah (minor gene). Selain itu, diasumsikan pula bahwa tidak hanya sedikit gen yang mengendalikan suatu sifat melainkan banyak gen. Karena itu, sifat kuantitatif sering dasamakan dengan sifat poligenik.
Ilmu ini banyak menggunakan matematika dan statistika dalam menjelaskan prinsip-prinsip yang dipakai maupun dalam metodologinya. Namun demikian, penerapan ilmu ini dalam ilmu pemuliaan sangat bermanfaat dalam bidang pertanian.
Rekayasa Genetika
Rekayasa genetika (Ing. genetic engineering) dalam arti paling luas adalah penerapan genetika untuk kepentingan manusia. Dengan pengertian ini kegiatan pemuliaan hewan atau tanaman melalui seleksi dalam populasi dapat dimasukkan. Demikian pula penerapan mutasi buatan tanpa target dapat pula dimasukkan. Walaupun demikian, masyarakat ilmiah sekarang lebih bersepakat dengan batasan yang lebih sempit, yaitu penerapan teknik-teknik biologi molekular untuk mengubah susunan genetik dalam kromosom atau mengubah sistem ekspresi genetik yang diarahkan pada kemanfaatan tertentu.
Obyek rekayasa genetika mencakup hampir semua golongan organisme, mulai dari bakteri, fungi, hewan tingkat rendah, hewan tingkat tinggi, hingga tumbuh-tumbuhan. Bidang kedokteran dan farmasi paling banyak berinvestasi di bidang yang relatif baru ini. Sementara itu bidang lain, seperti ilmu pangan, kedokteran hewan, pertanian (termasuk peternakan dan perikanan), serta teknik lingkungan juga telah melibatkan ilmu ini untuk mengembangkan bidang masing-masing.

Perkembangan

Ilmu terapan ini dapat dianggap sebagai cabang biologi maupun sebagai ilmu-ilmu rekayasa (keteknikan). Dapat dianggap, awal mulanya adalah dari usaha-usaha yang dilakukan untuk menyingkap material yang diwariskan dari satu generasi ke generasi yang lain. Ketika orang mengetahui bahwa kromosom adalah material yang membawa bahan terwariskan itu (disebut gen) maka itulah awal mula ilmu ini. Tentu saja, penemuan struktur DNA menjadi titik yang paling pokok karena dari sinilah orang kemudian dapat menentukan bagaimana sifat dapat diubah dengan mengubah komposisi DNA, yang adalah suatu polimer bervariasi.
Tahap-tahap penting berikutnya adalah serangkaian penemuan enzim restriksi (pemotong) DNA, regulasi (pengaturan ekspresi) DNA (diawali dari penemuan operon laktosa pada prokariota), perakitan teknik PCR, transformasi genetik, teknik peredaman gen (termasuk interferensi RNA), dan teknik mutasi terarah (seperti Tilling). Sejalan dengan penemuan-penemuan penting itu, perkembangan di bidang biostatistika, bioinformatika dan robotika/automasi memainkan peranan penting dalam kemajuan dan efisiensi kerja bidang ini.

Tidak ada komentar:

Posting Komentar